Crystal Structures and Magnetic Properties of New Quaternary Sulfides $BaLn_2MS_5$ (Ln = La, Ce, Pr, Nd; M = Co, Zn) and $BaNd_2MnS_5$

Makoto Wakeshima and Yukio Hinatsu

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Received December 1, 2000; in revised form February 26, 2001; accepted March 15, 2001; published online May 11, 2001

Crystal structures and magnetic properties are investigated for new quaternary sulfides $BaLn_2TS_5$ (Ln = La, Ce, Pr, Nd; T = Co, Zn) and $BaNd_2MnS_5$. These compounds crystallize in a tetragonal structure (space group *14mcm*), which is isostructural with $BaLa_2MnS_5$. Their lattice parameters increase monotonically with the sizes of the lanthanide and transition metal. The increase of the *a* values is mainly due to the lanthanide size, and that of the *c* values is due to the transition metal size. In $BaLn_2CoS_5$, the Co^{2+} ions have the unquenched orbital moments. In $BaNd_2MnS_5$, the magnetic anomaly due to the antiferromagnetic ordering of the Mn^{2+} ion, is found at 63 K. Antiferromagnetic orderings for the Co^{2+} ions are observed at ca. 65 K in $BaLn_2CoS_5$ (Ln = La, Ce, Pr, Nd). For $BaNd_2TS_5$ (T = Mn, Co, Zn), the Nd³⁺ ions also show antiferromagnetic behavior below 6 K. \odot 2001 Academic Press

INTRODUCTION

A quaternary manganese sulfide BaLa₂MnS₅ crystallizes in a tetragonal structure (space group I4/mcm) based on the stacking of BaMnS₄ and La₂S layers (1). In the BaMnS₄ laver, the Mn ion is bonded to four sulfur ions in a tetrahedral coordination form and these MnS₄ tetrahedra link via the Ba ions. Its electrical properties showed an *n*-type semiconductivity. Recently, we investigated the crystal structures and magnetic properties of BaLn₂MnS₅ (Ln = La, Ce, and Pr) (2). From their electron paramagnetic resonance spectra, magnetic susceptibilities, and specific heats, the Mn ions were found to be in the ${}^{6}S_{5/2}$ state and showed the antiferromagnetic ordering at 58.5 K for BaLa₂MnS₅, 62 K for BaCe₂MnS₅, and 64.5 K for BaPr₂MnS₅. In the succeeding paper, the collinear antiferromagnetic structure of BaLa2MnS5 was deterthrough mined the powder neutron diffraction measurements (3).

In the present study, we have attempted to substitute the Co^{2+} and Zn^{2+} ions for the Mn^{2+} ions, and prepared new quaternary sulfides $BaLn_2MS_5$ (Ln = La, Ce, Pr, Nd;M = Co, Zn). In these compounds, the divalent 3d transition elements are expected to occupy the Mn^{2+} tetrahedral sites. The substitution of Mn^{2+} by a diamagnetic Zn^{2+} enables us to investigate the effect of the lanthanide ions on the magnetic properties of these sulfides. Moreover, the sulfides in which the Mn^{2+} ions are substituted by Co^{2+} ions can be expected to show interesting electrical and magnetic properties (4, 5). In this paper, we report the preparation, crystal structures, and magnetic properties of a series of new quaternary sulfides, $BaLn_2MS_5$ and $BaNd_2MnS_5$.

EXPERIMENTAL

Quaternary sulfides $BaLn_2TS_5$ (Ln = La, Ce, Pr, Nd; T = Co, Zn) and $BaNd_2MnS_5$ were synthesized by a solidstate reaction. Barium sulfide BaS and lanthanide sesquisulfides Ln_2S_3 (Ln = La, Ce, Pr, Nd) were prepared by heating $BaCO_3$, Ln_2O_3 (Ln = La, Pr, Nd), and CeO_2 in a stream of CS_2/N_2 , which was obtained by bubbling N_2 gas through liquid CS_2 , at 1323 K for 6 h. The stoichiometric mixture of metal sulfides was ground, put into a quartz ampoule, evacuated, and sealed. Then, each ampoule was heated at 1223 K for $BaLn_2TS_5$ (T = Co, Zn) and at 1273 K for $BaNd_2MnS_5$ for 2 days with regrinding at intervals.

Powder X-ray diffraction measurements were carried out using a Rigaku RINT2200 diffractometer with graphitemonochromatized CuK α radiation at room temperature. An angular range 2 θ from 10 to 120° was scanned in steps of 0.02° with a step time 5 s. The program RIETAN97 (6) was used for refinements of crystal structures by the Rietveld method. A pseudo-Voigt profile function was applied to describe the peak shape.

The magnetic susceptibility measurements were carried out using a SQUID magnetometer (Quantum Design, MPMS-5S). The temperature dependence of the susceptibilities was measured under an applied magnetic field of 0.1 T after cooling down to 2 K in a zero field (ZFC) and was measured on cooling under the field (FC) of 0.1 T. The magnetic susceptibility data were corrected for the diamagnetic contribution of the atomic cores (7).

FIG. 1. Powder X-ray diffraction patterns and Rietveld refinements for $BaNd_2TS_5$ (T = Mn, Co, Zn). In each case, the bottom trace is a plot of the difference between (+) observed and (—) calculated intensities. All allowed Bragg reflections are shown by vertical lines.

TABLE 1Lattice and Positional Parameters of $BaLn_2TS_5$ (Ln = La, Ce, Pr, Nd; T = Mn, Co, Zn)

	BaNd ₂ MnS ₅	BaLa ₂ CoS ₅	BaCe ₂ CoS ₅	BaPr ₂ CoS ₅	BaNd ₂ CoS ₅	BaLa ₂ ZnS ₅	BaCe ₂ ZnS ₅	BaPr ₂ ZnS ₅	BaNd ₂ ZnS ₅
a/Å	7.8583(1)	7.9636(1)	7.8829(1)	7.8473(1)	7.8134(1)	7.9823(1)	7.9102(1)	7.8719(1)	7.8394(1)
c/Å	13.7807(2)	13.6189(2)	13.5988(2)	13.5790(2)	13.5586(2)	13.6708(2)	13.6579(2)	13.6327(2)	13.6131(1)
x(Ln)	0.1613(3)	01.1632(1)	0.1624(3)	0.1631(3)	0.1630(3)	0.1623(3)	0.1620(3)	0.1621(4)	0.1622(3)
x(S(2))	0.1536(10)	0.1481(4)	0.1488(10)	0.1477(9)	0.1482(9)	0.1510(9)	0.1505(9)	0.1499(10)	0.1497(9)
z (S(2))	0.6329(6)	0.6375(2)	0.6364(6)	0.6359(6)	0.6350(6)	0.6376(6)	0.6359(6)	0.6346(7)	0.6343(6)
$R_{I}/\%$	3.26	3.02	3.28	2.47	2.32	3.17	2.89	2.11	1.91
$R_{F}^{0/0}$	2.01	1.93	1.80	1.66	1.41	2.02	1.53	1.45	1.16
$R_{ m wp}/\%$	12.57	13.43	14.09	13.33	11.14	11.63	13.44	13.90	11.33

Note. $R_I = \sum |I_{obs} - I_{cal}| / \sum I_{obs}, R_F = \sum |I_{obs}^{1/2} - I_{cal}^{1/2}| / \sum I_{obs}^{1/2}, R_{wp} = [\sum w(y_{obs} - y_{cal})^2 / \sum wy_{obs}^2]^{1/2}$. Ba is located in the 4*a* (0,0, $\frac{1}{4}$) site, *Ln* in the 8 h (*x*, *x* + $\frac{1}{2}$, 0) site, *T* in the 4*b* (0, $\frac{1}{2}$, $\frac{1}{4}$) site, S(1) in the 4*c* (0,0,0) site, and S(2) in the 16*l* (*x*, *x* + $\frac{1}{2}$, *z*) site.

RESULTS AND DISCUSSION

Crystal Structures

Quaternary sulfides $BaLn_2TS_5$ (Ln = La, Ce, Pr, Nd;T = Co, Zn) and $BaNd_2MnS_5$ were obtained as single phases. Their powder X-ray diffraction patterns were confirmed to be similar to those for the $BaLn_2MnS_5$ (Ln = La, Ce, Pr). Their diffraction patterns were indexed on a tetragonal cell, which was isostructural with $BaLn_2MnS_5$ (space group I4/mcm), with four chemical formulas per unit cell. Figure 1 shows the observed and calculated diffraction patterns for $BaNd_2TS_5$ (T = Mn, Co, Zn). For the Rietveld analysis, three positional parameters of $BaLa_2MnS_5$ (2) were used as the initial positional parameters. The initial lattice parameters were calculated by the least-squares method. The refined lattice parameters and atomic positions of Ba Ln_2TS_5 (Ln = La, Ce, Pr, Nd; T = Co, Zn) and BaNd₂MnS₅ are given in Table 1. Barium, lanthanide, and manganese (cobalt, zinc) cations are located in $4a (0, 0, \frac{1}{4}), 8h (x, x + \frac{1}{2}, 0)$, and $4b (0, \frac{1}{2}, \frac{1}{4})$ sites, respectively. Sulfur anions occupy two different sites, S(1) and S(2) in 4c (0, 0, 0) and $16l (x, x + \frac{1}{2}, z)$, respectively. The schematic structure of Ba Ln_2TS_5 (Ln = La, Ce, Pr, Nd; T = Mn, Co, Zn) is illustrated in Fig. 2. The Ba TS_4 layers and LnS layers, which

FIG. 2. The schematic structure of Ba_2LnTS_5 (Ln = La, Ce, Pr, Nd; T = Mn, Co, Zn).

FIG. 3. Lattice parameters as a function of Ln^{3+} ionic radius. Data in this work and in Ref. (2) are represented by open and closed markers, respectively.

 $BaCe_2CoS_5 \quad BaPr_2CoS_5 \quad BaNd_2CoS_5 \quad BaLa_2ZnS_5 \quad BaCe_2ZnS_5$ $BaNd_2MnS_5$ BaLa₂CoS₅ $BaPr_2ZnS_5$ BaNd₂ZnS₅ Bond Length r/Å $Ba-S(1) \times 2$ 3.445 3.405 3.400 3.395 3.390 3.418 3.415 3.408 3.403 $Ba-S(2) \times 8$ 3.386(3) 3.405(2) 3.382(4) 3.375(4) 3.365(4) 3.402(4) 3.389(5) 3.385(6) 3.376(3) $Ln-S(1) \times 2$ 2.947(1)2.981(1) 2.954(1) 2.937(1)2.925(1)2.991(1) 2.965(1)2.950(1) 2.938(1) $Ln-S(2) \times 2$ 2.801(9) 2.783(10) 2.757(6) 2.833(4)2.805(7)2.795(7)2.776(8) 2.825(7)2.774(7) $Ln-S(2) \times 4$ 3.081(8) 3.109(3) 3.078(8) 3.060(7) 3.046(7) 3.130(7) 3.093(7) 3.055(7) 3.067(9) $T-S(2) \times 4$ 2.345(6)2.265(4) 2.268(7) 2.245(7) 2.259(8) 2.296(7) 2.294(9) 2.289(10)2.288(7)

TABLE 2Bond Lengths for $BaLn_2TS_5$ (Ln = La, Ce, Pr, Nd; T = Mn, Co, Zn)

are perpendicular to the c axis, are stacked alternately. The Ba ions are coordinated by eight nearest-neighbor sulfur ions S(2) and two next-nearest-neighbor sulfur ions S(1). The Ln ions have eight sulfur neighbors.

The lattice parameters as a function of the lanthanide ionic radius referred from Shannon's ionic radii (8) are shown in Fig. 3. Those of $BaLn_2MnS_5$ (Ln = La, Ce, Pr) reported in Ref. (2) are also shown in Fig. 3. Both the a and c parameters increase with the lanthanide ionic radius and the variation of the *a* parameters is steeper than that of the c parameters. Furthermore, these parameters increase with the transition metal ionic radius (0.66 Å for Mn²⁺, 0.58 Å for Co^{2+} , and 0.60 Å for Zn^{2+}) and the variation of the c parameters is larger than that of the *a* parameters. Some selected bond lengths are listed in Table 2 and their variation against the Ln^{3+} ionic radius is plotted in Fig. 4. The Ba-S and Ln-S lengths increase monotonously with the size of the Ln^{3+} ions, while the Mn–S, Co–S, and Zn–S lengths are almost constant within the experimental errors for variation of the Ln^{3+} ionic radius.

Magnetic Properties

Magnetic susceptibilities of $BaLn_2ZnS_5$ (Ln = Ce, Pr, Nd). The reciprocal molar magnetic susceptibilities of $BaLn_2ZnS_5$ (Ln = Ce, Pr, Nd) are shown as a function of temperature in Fig. 5. In these compounds, only the lanthanide ions are magnetic. The effective magnetic moments μ_{eff} per mole of the lanthanide ion are determined to be 2.551(2) μ_B for BaCe₂ZnS₅, 3.666(2) μ_B for BaPr₂ZnS₅, and 3.655(1) μ_B for BaNd₂ZnS₅ by applying the Curie–Weiss law ($\chi = C/(T - \theta)$) to the reciprocal susceptibility vs temperature curve in the high temperature region (150 K $\leq T \leq$ 300 K). These calculated moments agree well with the magnetic moments of free trivalent lanthanide ions (2.54 μ_B for Ce³⁺, 3.58 μ_B for Pr³⁺, 3.62 μ_B for Nd³⁺).

The convex curve of $BaCe_2ZnS_5$ at lower temperatures should be attributable to the contribution of the crystal field effect. Only the $BaNd_2ZnS_5$ compound shows a magnetic anomaly at low temperatures. The inset of Fig. 5 shows the magnetic susceptibility of $BaNd_2ZnS_5$ below 10 K. It shows a maximum at 3.9 K and indicates that the Nd^{3+} ion is in an antiferromagnetic state below this temperature. Since the Ce^{3+} ions are capable of showing magnetic interactions at lower temperatures, the $BaCe_2ZnS_5$ compound should also show some magnetic transition at furthermore lower temperatures.

Magnetic susceptibility of $BaNd_2MnS_5$. Figure 6 shows the temperature dependence of the molar magnetic susceptibilities of $BaNd_2MnS_5$. No divergence between the ZFC and FC magnetic susceptibilities is observed. The susceptibility of $BaNd_2MnS_5$ indicates an antiferromagnetic transition at T_{N1} (~ 4.7 K) and a magnetic anomaly at T_{N2} (~ 63 K). This antiferromagnetic transition should be attributable to the antiferromagnetic ordering of the Nd³⁺ ions, because similar magnetic transition at the nearly same temperature has been observed in $BaNd_2ZnS_5$ (see Fig. 5).

Figure 7 shows the first derivative of the magnetic susceptibility of BaNd₂MnS₅ in the neighborhood of T_{N2} . The results for Ba Ln_2 MnS₅ (Ln = La, Ce, Pr) (2) are also shown in Fig. 7. The magnetic anomaly found for BaNd₂MnS₅ at ~ 63 K is quite similar to those reported for Ba Ln_2 MnS₅ (Ln = La, Ce, Pr). From the magnetic susceptibility and the specific heat measurements, the Mn²⁺ ions were found to be in the antiferromagnetic state below 58.5 K for BaLa₂MnS₅, 62 K for BaCe₂MnS₅, and 64.5 K for BaPr₂MnS₅ (2). Therefore, the anomaly found at T_{N2} (63 K) in BaNd₂MnS₅ should be due to the antiferromagnetic interactions between Mn²⁺ ions.

The inset of Fig. 6 shows the reciprocal magnetic susceptibility vs temperature curve for BaNd₂MnS₅ in the 150–300 K temperature range. The Curie–Weiss law holds in this temperature range, which yields the Weiss constant $\theta = -76.8(1)$ K and the Curie constant C = 7.588(3) emu mol⁻¹ K⁻¹ for one formula unit. The spectrum of BaNd₂MnS₅, taken from electron paramagnetic resonance (EPR) measurement at room temperature, is very similar to that of BaLa₂MnS₅ in Ref. (2), and the g value is calculated

FIG. 4. Variation of the bond lengths as a function of Ln^{3+} ionic radius.

to be 2.00. This result means that the Mn ion is in the ${}^{6}S_{5/2}$ state without an orbital moment contribution, and its effective magnetic moment μ_{eff} is 5.92 $\mu_{\rm B}$. The total effective magnetic moment of BaNd₂MnS₅ is represented by the

FIG. 5. Temperature dependence of the reciprocal magnetic susceptibility χ^{-1} of Ba Ln_2 ZnS₅ (Ln =Ce, Pr, Nd). Straight lines represent the Curie–Weiss law fittings (see text). The inset shows χ of BaNd₂ZnS₅ below 10 K.

equation $\mu_{eff}(total)^2 = \mu_{eff}(Mn^{2+})^2 + 2\mu_{eff}(Nd^{3+})^2$. Assuming that the effective moment of Mn^{2+} is 5.92 μ_B , the moment of Nd³⁺ is estimated to be 3.59 μ_B , which is in good agreement with the value of a free Nd³⁺ ion (3.62 μ_B).

Magnetic susceptibilities of $BaLn_2CoS_5$ (Ln = La, Ce, Pr, Nd). Figure 8 shows the temperature dependence of the magnetic susceptibilities of $BaLa_2CoS_5$. An antiferromagnetic transition is found at 60 K. From the fitting of

FIG. 6. Temperature dependence of the magnetic susceptibility χ of BaNd₂MnS₅. The inset shows χ^{-1} in the temperature range between 150 and 300 K. A straight line represents the Curie–Weiss law fitting.

FIG. 7. The first derivatives of the magnetic susceptibilities of $BaLn_2MnS_5$ (Ln = La, Ce, Pr, Nd) in the neighborhood of T_{N2} .

the Curie–Weiss law the effective magnetic moment of Co²⁺ and a Weiss constant are estimated to be 4.857(2) $\mu_{\rm B}$ and -66.4(2) K, respectively. This moment is larger than the value (3.87 $\mu_{\rm B}$) calculated from the "spin–only" state (S = 3/2) of d^7 electronic configuration and is smaller than the value (6.63 $\mu_{\rm B}$) calculated by taking into account the contribution of the spin–orbit interaction. This result

FIG. 8. Temperature dependence of the magnetic susceptibility χ of BaLa₂CoS₅. The inset shows χ^{-1} in the temperature range between 150 and 300 K. A straight line represents the Curie–Weiss law fitting.

FIG. 9. Temperature dependence of the reciprocal magnetic susceptibilities χ^{-1} of BaLn₂CoS₅ (*Ln* = Ce, Pr, Nd). Straight lines represent the Curie–Weiss law fittings. The inset shows χ of BaNd₂CoS₅ below 10 K.

indicates that the ground state of Co^{2+} has an unquenched orbital moment.

Figure 9 shows the reciprocal magnetic susceptibilities of $BaLn_2CoS_5$ (Ln = Ce, Pr, Nd) as a function of temperature. In all the susceptibilities, the magnetic anomalies are found around 65 K and they should be attributable to the antiferromagnetic couplings of the Co²⁺ ions, because a clear antiferromagnetic transition has been observed for BaLa₂CoS₅ (La: diamagnetic) at nearly the same temperature (see Fig. 8). In order to determine the Néel temperatures of the Co²⁺ ions, the first derivatives of the magnetic susceptibility of $BaLn_2CoS_5$ (Ln = La, Ce, Pr, Nd) are calculated in the temperature range from 40 to 80 K, and they are shown in Fig. 10. The Co^{2+} ions were found to be in the antiferromagnetic state below 63.5 K for BaLa₂CoS₅, 65K for BaCe₂CoS₅, 65K for BaPr₂CoS₅, and 58.5K for BaNd₂CoS₅. For BaNd₂CoS₅, another antiferromagnetic ordering occurs below 6.7 K, as shown in the inset of Fig. 9. This ordering should be due to the antiferromagnetic coupling of the Nd³⁺ ions, in analogy with the cases of BaNd₂ZnS₅ and BaNd₂MnS₅. The magnetic susceptibilities of these compounds obey a Curie-Weiss law at high temperatures. In the $BaLn_2ZnS_5$ compounds, the effective magnetic moment of the Ln ion is very close to that of a free Ln ion. On the assumption that the moment of the Ln ion in the Ba Ln_2CoS_5 compounds also agrees with that of a free Ln ion, the effective magnetic moment of Co^{2+} is calculated to be 5.05 μ_{B} for BaCe₂CoS₅, 4.79 $\mu_{\rm B}$ for BaPr₂CoS₅, and 5.03 $\mu_{\rm B}$ for BaNd₂CoS₅, indicating that the orbital moments of Co²⁺ ions are not quenched.

FIG. 10. The first derivatives of the magnetic susceptibility of $BaLn_2CoS_5$ (Ln = La, Ce, Pr, Nd) in the temperature range between 40 and 80 K.

SUMMARY

New quaternary sulfides with a tetragonal structure (space group: I4mcm), Ba Ln_2MS_5 (Ln = La, Ce, Pr, Nd;

M = Co, Zn) and $\text{BaNd}_2\text{MnS}_5$ were synthesized. The lattice parameters of *a* increase mainly with the size of the lanthanide ions, and those of *c* increase with the transition metal size. Magnetic susceptibility measurements show that the Mn^{2+} , Co^{2+} , and Nd^{3+} ions in these $\text{Ba}Ln_2M\text{S}_5$ (Ln = La, Ce, Pr, Nd; M = Mn, Co, Zn) are in the antiferromagnetic states below 63, ~ 65, and 6 K, respectively.

REFERENCES

- 1. H. Masuda, T. Fujino, N. Sato, and K. Yamada, J. Solid State Chem. 146, 336 (1999).
- 2. M. Wakeshima and Y. Hinatsu, J. Solid State Chem. 163, 330 (2000).
- M. Wakeshima, Y. Hinatsu, K. Oikawa, Y. Shimojo, and Y. Morii, J. Mater. Chem. 10, 2183 (2000).
- L. S. Martinson, J. W. Schweitzer, and N. C. Baenziger, *Phys. Rev. B* 54, 11265 (1996).
- 5. N. Nakayama, K. Kosuge, S. Kachi, T. Shinjo, and T. Takada, J. Solid State Chem. 33, 351 (1980).
- F. Izumi, *in* "The Rietveld Method" (R. A. Young, Ed.), Chap. 13. Oxford University Press, Oxford, 1995.
- L. N. Mulay and E. A. Boudreaux (Eds.), "Theory and Applications of Molecular Diamagnetism." Wiley-Interscience, New York, 1976.
- R. D. Shannon, Acta Crystallogr., Sect. A: Found. Crystallogr. 32, 751 (1976).