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Crystal structures and magnetic properties are investigated for
new quaternary sul5des BaLn2TS5 (Ln 5 La, Ce, Pr, Nd;
T 5 Co, Zn) and BaNd2MnS5. These compounds crystallize in
a tetragonal structure (space group I4mcm), which is isostructur-
al with BaLa2MnS5. Their lattice parameters increase monotoni-
cally with the sizes of the lanthanide and transition metal. The
increase of the a values is mainly due to the lanthanide size, and
that of the c values is due to the transition metal size. In
BaLn2CoS5, the Co21 ions have the unquenched orbital moments.
In BaNd2MnS5, the magnetic anomaly due to the antiferromag-
netic ordering of the Mn21 ion, is found at 63 K. Antiferromag-
netic orderings for the Co21 ions are observed at ca. 65 K in
BaLn2CoS5 (Ln 5 La, Ce, Pr, Nd). For BaNd2TS5 (T 5 Mn,
Co, Zn), the Nd31 ions also show antiferromagnetic behavior
below 6 K. ( 2001 Academic Press

INTRODUCTION

A quaternary manganese sul"de BaLa
2
MnS

5
crystallizes

in a tetragonal structure (space group I4/mcm) based on the
stacking of BaMnS

4
and La

2
S layers (1). In the BaMnS

4
layer, the Mn ion is bonded to four sulfur ions in a tetrahed-
ral coordination form and these MnS

4
tetrahedra link via

the Ba ions. Its electrical properties showed an n-type
semiconductivity. Recently, we investigated the crystal
structures and magnetic properties of Ba¸n

2
MnS

5
(¸n"La, Ce, and Pr) (2). From their electron paramagnetic
resonance spectra, magnetic susceptibilities, and speci"c
heats, the Mn ions were found to be in the 6S

5@2
state and

showed the antiferromagnetic ordering at 58.5 K
for BaLa

2
MnS

5
, 62 K for BaCe

2
MnS

5
, and 64.5 K

for BaPr
2
MnS

5
. In the succeeding paper, the collinear

antiferromagnetic structure of BaLa
2
MnS

5
was deter-

mined through the powder neutron di!raction
measurements (3).

In the present study, we have attempted to substitute the
Co2` and Zn2` ions for the Mn2` ions, and prepared new
quaternary sul"des Ba¸n

2
MS

5
(¸n"La,Ce,Pr,Nd;

M"Co, Zn). In these compounds, the divalent 3d
16
transition elements are expected to occupy the Mn2` tetra-
hedral sites. The substitution of Mn2` by a diamagnetic
Zn2` enables us to investigate the e!ect of the lanthanide
ions on the magnetic properties of these sul"des. Moreover,
the sul"des in which the Mn2` ions are substituted by Co2`

ions can be expected to show interesting electrical and
magnetic properties (4, 5). In this paper, we report the prep-
aration, crystal structures, and magnetic properties of
a series of new quaternary sul"des, Ba¸n

2
MS

5
and

BaNd
2
MnS

5
.

EXPERIMENTAL

Quaternary sul"des Ba¸n
2
¹S

5
(¸n"La,Ce,Pr,Nd;

¹"Co, Zn) and BaNd
2
MnS

5
were synthesized by a solid-

state reaction. Barium sul"de BaS and lanthanide ses-
quisul"des ¸n

2
S
3

(¸n"La,Ce, Pr,Nd) were prepared by
heating BaCO

3
, ¸n

2
O

3
(¸n"La, Pr,Nd), and CeO

2
in

a stream of CS
2
/N

2
, which was obtained by bubbling N

2
gas

through liquid CS
2
, at 1323 K for 6 h. The stoichiometric

mixture of metal sul"des was ground, put into a quartz
ampoule, evacuated, and sealed. Then, each ampoule was
heated at 1223 K for Ba¸n

2
¹S

5
(¹"Co,Zn) and at 1273

K for BaNd
2
MnS

5
for 2 days with regrinding at intervals.

Powder X-ray di!raction measurements were carried out
using a Rigaku RINT2200 di!ractometer with graphite-
monochromatized CuKa radiation at room temperature.
An angular range 2h from 10 to 1203 was scanned in steps of
0.023 with a step time 5 s. The program RIETAN97 (6) was
used for re"nements of crystal structures by the Rietveld
method. A pseudo-Voigt pro"le function was applied to
describe the peak shape.

The magnetic susceptibility measurements were carried
out using a SQUID magnetometer (Quantum Design,
MPMS-5S). The temperature dependence of the susceptibil-
ities was measured under an applied magnetic "eld of 0.1 T
after cooling down to 2 K in a zero "eld (ZFC) and was
measured on cooling under the "eld (FC) of 0.1T. The
magnetic susceptibility data were corrected for the diamag-
netic contribution of the atomic cores (7).
3
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FIG. 1. Powder X-ray di!raction patterns and Rietveld re"nements for BaNd
2
¹S

5
(¹"Mn, Co, Zn). In each case, the bottom trace is a plot of the

di!erence between (#) observed and (*) calculated intensities. All allowed Bragg re#ections are shown by vertical lines.
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TABLE 1
Lattice and Positional Parameters of BaLn2TS5 (Ln 5 La,Ce,Pr, Nd; T 5 Mn, Co,Zn)

BaNd
2
MnS

5
BaLa

2
CoS

5
BaCe

2
CoS

5
BaPr

2
CoS

5
BaNd

2
CoS

5
BaLa

2
ZnS

5
BaCe

2
ZnS

5
BaPr

2
ZnS

5
BaNd

2
ZnS

5

a/As 7.8583(1) 7.9636(1) 7.8829(1) 7.8473(1) 7.8134(1) 7.9823(1) 7.9102(1) 7.8719(1) 7.8394(1)
c/As 13.7807(2) 13.6189(2) 13.5988(2) 13.5790(2) 13.5586(2) 13.6708(2) 13.6579(2) 13.6327(2) 13.6131(1)
x(¸n) 0.1613(3) 01.1632(1) 0.1624(3) 0.1631(3) 0.1630(3) 0.1623(3) 0.1620(3) 0.1621(4) 0.1622(3)
x (S(2)) 0.1536(10) 0.1481(4) 0.1488(10) 0.1477(9) 0.1482(9) 0.1510(9) 0.1505(9) 0.1499(10) 0.1497(9)
z (S(2)) 0.6329(6) 0.6375(2) 0.6364(6) 0.6359(6) 0.6350(6) 0.6376(6) 0.6359(6) 0.6346(7) 0.6343(6)
R

I
/% 3.26 3.02 3.28 2.47 2.32 3.17 2.89 2.11 1.91

R
F
/% 2.01 1.93 1.80 1.66 1.41 2.02 1.53 1.45 1.16

R
81

/% 12.57 13.43 14.09 13.33 11.14 11.63 13.44 13.90 11.33

Note. R
I
"+ DI

0"4
!I

#!-
D/+I

0"4
, R

F
"+ DI1@2

0"4
!I1@2

#!-
D/+I1@2

0"4
, R

81
"[+w(y

0"4
!y

#!-
)2/+wy2

0"4
]1@2. Ba is located in the 4a (0, 0, 1

4
) site, ¸n in the 8 h

(x,x#1
2
, 0) site, ¹ in the 4b (0, 1

2
, 1
4
) site, S(1) in the 4c (0, 0, 0) site, and S(2) in the 16l (x,x#1

2
, z) site.
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RESULTS AND DISCUSSION

Crystal Structures

Quaternary sul"des Ba¸n
2
¹S

5
(¸n"La,Ce,Pr,Nd;

¹"Co, Zn) and BaNd
2
MnS

5
were obtained as single

phases. Their powder X-ray di!raction patterns were
con"rmed to be similar to those for the Ba¸n

2
MnS

5
(¸n"La, Ce, Pr). Their di!raction patterns were in-
dexed on a tetragonal cell, which was isostructural with
Ba¸n

2
MnS

5
(space group I4/mcm), with four chemi-

cal formulas per unit cell. Figure 1 shows the observed
and calculated di!raction patterns for BaNd

2
¹S

5
(¹"Mn,Co,Zn). For the Rietveld analysis, three posi-
tional parameters of BaLa

2
MnS

5
(2) were used as the initial
FIG. 2. The schematic structure of Ba
2
¸n¹S

5
(¸n"La,Ce, Pr,Nd;

¹"Mn,Co,Zn).
positional parameters. The initial lattice parameters were
calculated by the least-squares method. The re"ned lattice
parameters and atomic positions of Ba¸n

2
¹S

5
(¸n"La, Ce, Pr,Nd; ¹"Co, Zn) and BaNd

2
MnS

5
are

given in Table 1. Barium, lanthanide, and manganese
(cobalt, zinc) cations are located in 4a (0, 0, 1

4
), 8h (x, x#1

2
, 0),

and 4b (0, 1
2
, 1
4
) sites, respectively. Sulfur anions occupy

two di!erent sites, S(1) and S(2) in 4c (0, 0, 0) and 16l
(x,x#1

2
, z), respectively. The schematic structure of

Ba¸n
2
¹S

5
(¸n"La,Ce, Pr,Nd; ¹"Mn,Co, Zn) is

illustrated in Fig. 2. The Ba¹S
4
layers and ¸nS layers, which
FIG. 3. Lattice parameters as a function of ¸n3` ionic radius. Data in
this work and in Ref. (2) are represented by open and closed markers,
respectively.



TABLE 2
Bond Lengths for BaLn2TS5 (Ln 5 La,Ce,Pr,Nd; T 5 Mn,Co,Zn)

BaNd
2
MnS

5
BaLa

2
CoS

5
BaCe

2
CoS

5
BaPr

2
CoS

5
BaNd

2
CoS

5
BaLa

2
ZnS

5
BaCe

2
ZnS

5
BaPr

2
ZnS

5
BaNd

2
ZnS

5

Bond Length r/As
Ba}S(1)]2 3.445 3.405 3.400 3.395 3.390 3.418 3.415 3.408 3.403
Ba}S(2)]8 3.386(3) 3.405(2) 3.382(4) 3.375(4) 3.365(4) 3.402(4) 3.389(5) 3.385(6) 3.376(3)
¸n}S(1)]2 2.947(1) 2.981(1) 2.954(1) 2.937(1) 2.925(1) 2.991(1) 2.965(1) 2.950(1) 2.938(1)
¸n}S(2)]2 2.757(6) 2.833(4) 2.805(7) 2.795(7) 2.776(8) 2.825(7) 2.801(9) 2.783(10) 2.774(7)
¸n}S(2)]4 3.081(8) 3.109(3) 3.078(8) 3.060(7) 3.046(7) 3.130(7) 3.093(7) 3.067(9) 3.055(7)
¹}S(2)]4 2.345(6) 2.265(4) 2.268(7) 2.245(7) 2.259(8) 2.296(7) 2.294(9) 2.289(10) 2.288(7)
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are perpendicular to the c axis, are stacked alternately. The
Ba ions are coordinated by eight nearest-neighbor sulfur
ions S(2) and two next-nearest-neighbor sulfur ions S(1). The
¸n ions have eight sulfur neighbors.

The lattice parameters as a function of the lanthanide
ionic radius referred from Shannon's ionic radii (8) are
shown in Fig. 3. Those of Ba¸n

2
MnS

5
(¸n"La,Ce, Pr)

reported in Ref. (2) are also shown in Fig. 3. Both the a and
c parameters increase with the lanthanide ionic radius and
the variation of the a parameters is steeper than that of the
c parameters. Furthermore, these parameters increase with
the transition metal ionic radius (0.66 A_ for Mn2`, 0.58 A_
for Co2`, and 0.60 A_ for Zn2`) and the variation of the
c parameters is larger than that of the a parameters. Some
selected bond lengths are listed in Table 2 and their vari-
ation against the ¸n3` ionic radius is plotted in Fig. 4. The
Ba}S and ¸n}S lengths increase monotonously with the size
of the ¸n3` ions, while the Mn}S, Co}S, and Zn}S lengths
are almost constant within the experimental errors for vari-
ation of the ¸n3` ionic radius.

Magnetic Properties

Magnetic susceptibilities of Ba¸n
2
ZnS

5
(¸n"Ce,Pr,

Nd). The reciprocal molar magnetic susceptibilities of
Ba¸n

2
ZnS

5
(¸n"Ce, Pr,Nd) are shown as a function of

temperature in Fig. 5. In these compounds, only the lan-
thanide ions are magnetic. The e!ective magnetic moments
k
%&&

per mole of the lanthanide ion are determined to be
2.551(2) k

B
for BaCe

2
ZnS

5
, 3.666(2) k

B
for BaPr

2
ZnS

5
, and

3.655(1) k
B

for BaNd
2
ZnS

5
by applying the Curie}Weiss

law (s"C/(¹!h)) to the reciprocal susceptibility vs tem-
perature curve in the high temperature region
(150 K4¹4300 K). These calculated moments agree well
with the magnetic moments of free trivalent lanthanide ions
(2.54 k

B
for Ce3`, 3.58 k

B
for Pr3`, 3.62 k

B
for Nd3`).

The convex curve of BaCe
2
ZnS

5
at lower temperatures

should be attributable to the contribution of the crystal "eld
e!ect. Only the BaNd

2
ZnS

5
compound shows a magnetic

anomaly at low temperatures. The inset of Fig. 5 shows the
magnetic susceptibility of BaNd
2
ZnS

5
below 10 K. It shows

a maximum at 3.9 K and indicates that the Nd3` ion is in an
antiferromagnetic state below this temperature. Since the
Ce3` ions are capable of showing magnetic interactions at
lower temperatures, the BaCe

2
ZnS

5
compound should also

show some magnetic transition at furthermore lower
temperatures.

Magnetic susceptibility of BaNd
2
MnS

5
. Figure 6 shows

the temperature dependence of the molar magnetic suscep-
tibilities of BaNd

2
MnS

5
. No divergence between the ZFC

and FC magnetic susceptibilities is observed. The suscepti-
bility of BaNd

2
MnS

5
indicates an antiferromagnetic

transition at ¹
N1

(&4.7 K) and a magnetic anomaly
at ¹

N2
(&63 K). This antiferromagnetic transition should

be attributable to the antiferromagnetic ordering of the
Nd3` ions, because similar magnetic transition at the nearly
same temperature has been observed in BaNd

2
ZnS

5
(see Fig. 5).

Figure 7 shows the "rst derivative of the magnetic suscep-
tibility of BaNd

2
MnS

5
in the neighborhood of ¹

N2
. The

results for Ba¸n
2
MnS

5
(¸n"La, Ce, Pr) (2) are also shown

in Fig. 7. The magnetic anomaly found for BaNd
2
MnS

5
at

&63 K is quite similar to those reported for Ba¸n
2
MnS

5
(¸n"La, Ce, Pr). From the magnetic susceptibility and the
speci"c heat measurements, the Mn2` ions were found to be
in the antiferromagnetic state below 58.5K for BaLa

2
MnS

5
,

62K for BaCe
2
MnS

5
, and 64.5K for BaPr

2
MnS

5
(2). There-

fore, the anomaly found at ¹
N2

(63K) in BaNd
2
MnS

5
should be due to the antiferromagnetic interactions between
Mn2` ions.

The inset of Fig. 6 shows the reciprocal magnetic suscepti-
bility vs temperature curve for BaNd

2
MnS

5
in the

150}300 K temperature range. The Curie}Weiss law holds
in this temperature range, which yields the Weiss constant
h"!76.8(1) K and the Curie constant C"7.588(3) emu
mol~1 K~1 for one formula unit. The spectrum of
BaNd

2
MnS

5
, taken from electron paramagnetic resonance

(EPR) measurement at room temperature, is very similar to
that of BaLa

2
MnS

5
in Ref. (2), and the g value is calculated



FIG. 4. Variation of the bond lengths as a function of ¸n3` ionic
radius.

FIG. 5. Temperature dependence of the reciprocal magnetic suscepti-
bility s~1 of Ba¸n

2
ZnS

5
(¸n"Ce, Pr,Nd). Straight lines represent the

Curie}Weiss law "ttings (see text). The inset shows s of BaNd
2
ZnS

5
below

10 K.

FIG. 6. Temperature dependence of the magnetic susceptibility s of
BaNd

2
MnS

5
. The inset shows s~1 in the temperature range between 150

and 300K. A straight line represents the Curie}Weiss law "tting.
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to be 2.00. This result means that the Mn ion is in the
6S

5@2
state without an orbital moment contribution, and its

e!ective magnetic moment k
%&&

is 5.92 k
B
. The total e!ective

magnetic moment of BaNd
2
MnS

5
is represented by the
equation k
%&&

(total)2"k
%&&

(Mn2`)2#2k
%&&

(Nd3`)2. As-
suming that the e!ective moment of Mn2` is 5.92 k

B
, the

moment of Nd3` is estimated to be 3.59 k
B
, which is in good

agreement with the value of a free Nd3` ion (3.62 k
B
).

Magnetic susceptibilities of BaLn
2
CoS

5
(¸n"¸a, Ce,

Pr,Nd ). Figure 8 shows the temperature dependence of
the magnetic susceptibilities of BaLa

2
CoS

5
. An antifer-

romagnetic transition is found at 60K. From the "tting of



FIG. 7. The "rst derivatives of the magnetic susceptibilities of
Ba¸n

2
MnS

5
(¸n"La,Ce, Pr,Nd) in the neighborhood of ¹

N2
.

FIG. 9. Temperature dependence of the reciprocal magnetic suscep-
tibilities s~1 of Ba¸n

2
CoS

5
(¸n"Ce, Pr,Nd). Straight lines represent the

Curie}Weiss law "ttings. The inset shows s of BaNd
2
CoS

5
below 10 K.
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the Curie}Weiss law the e!ective magnetic moment of Co2`

and a Weiss constant are estimated to be 4.857(2) k
B

and
!66.4(2) K, respectively. This moment is larger than the
value (3.87 k

B
) calculated from the &&spin}only'' state

(S"3/2) of d7 electronic con"guration and is smaller than
the value (6.63 k

B
) calculated by taking into account the

contribution of the spin}orbit interaction. This result
FIG. 8. Temperature dependence of the magnetic susceptibility s of
BaLa

2
CoS

5
. The inset shows s~1 in the temperature range between 150

and 300 K. A straight line represents the Curie}Weiss law "tting.
indicates that the ground state of Co2` has an unquenched
orbital moment.

Figure 9 shows the reciprocal magnetic susceptibilities of
Ba¸n

2
CoS

5
(¸n"Ce, Pr, Nd) as a function of temperature.

In all the susceptibilities, the magnetic anomalies are found
around 65 K and they should be attributable to the antifer-
romagnetic couplings of the Co2` ions, because a clear
antiferromagnetic transition has been observed for
BaLa

2
CoS

5
(La: diamagnetic) at nearly the same temper-

ature (see Fig. 8). In order to determine the NeH el temper-
atures of the Co2` ions, the "rst derivatives of the magnetic
susceptibility of Ba¸n

2
CoS

5
(¸n"La, Ce, Pr,Nd) are cal-

culated in the temperature range from 40 to 80 K, and they
are shown in Fig. 10. The Co2` ions were found to be in
the antiferromagnetic state below 63.5K for BaLa

2
CoS

5
,

65K for BaCe
2
CoS

5
, 65K for BaPr

2
CoS

5
, and 58.5 K

for BaNd
2
CoS

5
. For BaNd

2
CoS

5
, another antiferromag-

netic ordering occurs below 6.7K, as shown in the inset
of Fig. 9. This ordering should be due to the antiferro-
magnetic coupling of the Nd3` ions, in analogy with the
cases of BaNd

2
ZnS

5
and BaNd

2
MnS

5
. The magnetic

susceptibilities of these compounds obey a Curie}Weiss
law at high temperatures. In the Ba¸n

2
ZnS

5
compounds,

the e!ective magnetic moment of the ¸n ion is very close
to that of a free ¸n ion. On the assumption that the
moment of the ¸n ion in the Ba¸n

2
CoS

5
compounds

also agrees with that of a free ¸n ion, the e!ective magnetic
moment of Co2` is calculated to be 5.05 k

B
for BaCe

2
CoS

5
,

4.79 k
B

for BaPr
2
CoS

5
, and 5.03 k

B
for BaNd

2
CoS

5
,

indicating that the orbital moments of Co2` ions are not
quenched.



FIG. 10. The "rst derivatives of the magnetic susceptibility of
Ba¸n

2
CoS

5
(¸n"La, Ce,Pr,Nd) in the temperature range between 40 and

80 K.
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SUMMARY

New quaternary sul"des with a tetragonal structure
(space group: I4mcm), Ba¸n

2
MS

5
(¸n"La,Ce,Pr,Nd;
M"Co, Zn) and BaNd
2
MnS

5
were synthesized. The

lattice parameters of a increase mainly with the size
of the lanthanide ions, and those of c increase with the
transition metal size. Magnetic susceptibility measurements
show that the Mn2`, Co2`, and Nd3` ions in these
Ba¸n

2
MS

5
(¸n"La,Ce, Pr,Nd; M"Mn,Co, Zn) are in

the antiferromagnetic states below 63, &65, and 6K,
respectively.
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