Crystal Structures and Magnetic Properties of New Quaternary Sulfides Ba $Ln₂MS₅$ (Ln = La, Ce, Pr, Nd; $M = Co$, Zn) and BaNd₂MnS₅

Makoto Wakeshima and Yukio Hinatsu

Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060}*0810, Japan*

Received December 1, 2000; in revised form February 26, 2001; accepted March 15, 2001; published online May 11, 2001

Crystal structures and magnetic properties are investigated for new quaternary sulfides $BaLn₂TS₅$ (*Ln* = La, Ce, Pr, Nd; $T = \text{Co}, \text{Zn}$ and BaNd₂MnS₅. These compounds crystallize in a tetragonal structure (space group *I*4*mcm*), which is isostructural with BaLa₂MnS₅. Their lattice parameters increase monotonically with the sizes of the lanthanide and transition metal. The increase of the *a* values is mainly due to the lanthanide size, and that of the *c* values is due to the transition metal size. In $BaLn₂CoS₅$, the $Co²⁺$ ions have the unquenched orbital moments. In $BaNd₂MnS₅$, the magnetic anomaly due to the antiferromagnetic ordering of the Mn^{2+} ion, is found at 63 K. Antiferromagnetic orderings for the Co^{2+} ions are observed at ca. 65 K in Ba Ln_2CoS_5 (*Ln* = La, Ce, Pr, Nd). For BaNd₂TS₅ (*T* = Mn, Co, Zn), the Nd³⁺ ions also show antiferromagnetic behavior below 6 K. C 2001 Academic Press

INTRODUCTION

A quaternary manganese sulfide $BaLa₂MnS₅$ crystallizes in a tetragonal structure (space group *I*4/*mcm*) based on the stacking of BaMnS₄ and La₂S layers [\(1\)](#page-6-0). In the BaMnS₄
layer, the Mn ion is bonded to four sulfur ions in a tetrahedral coordination form and these $MnS₄$ tetrahedra link via the Ba ions. Its electrical properties showed an *n*-type semiconductivity. Recently, we investigated the crystal structures and magnetic properties of $BaLn₂MnS₅$
(*Ln* = La, Ce, and Pr) [\(2\).](#page-6-0) From their electron paramagnetic resonance spectra, magnetic susceptibilities, and specific heats, the Mn ions were found to be in the ${}^6S_{5/2}$ state and showed the antiferromagnetic ordering at 58.5 K for BaLa₂MnS₅, 62 K for BaCe₂MnS₅, and 64.5 K for BaPr₂MnS₅. In the succeeding paper, the collinear antiferromagnetic structure of $BaLa₂MnS₅$ was determined through the powder neutron diffraction measurements [\(3\)](#page-6-0).

In the present study, we have attempted to substitute the $Co²⁺$ and $Zn²⁺$ ions for the Mn²⁺ ions, and prepared new quaternary sulfides $BaLn₂MS₅$ ($Ln = La, Ce, Pr, Nd;$ $M = \text{Co}, \text{Zn}$. In these compounds, the divalent 3*d* transition elements are expected to occupy the Mn^{2+} tetrahedral sites. The substitution of Mn^{2+} by a diamagnetic Zn^{2+} enables us to investigate the effect of the lanthanide ions on the magnetic properties of these sulfides. Moreover, the sulfides in which the Mn²⁺ ions are substituted by Co^{2+} ions can be expected to show interesting electrical and magnetic properties [\(4,5\).](#page-6-0) In this paper, we report the preparation, crystal structures, and magnetic properties of a series of new quaternary sulfides, $Ba\overline{L}n_2\overline{MS}_5$ and $BaNd₂MnS₅$.

EXPERIMENTAL

Quaternary sulfides $BaLn₂TS₅$ (*Ln* = La, Ce, Pr, Nd; $T = \text{Co}, \text{Zn}$) and $\text{BaNd}_2\text{MnS}_5$ were synthesized by a solidstate reaction. Barium sulfide BaS and lanthanide sesquisulfides Ln_2S_3 ($Ln = La$, Ce, Pr, Nd) were prepared by heating BaCO₃, Ln_2O_3 ($Ln = La$, Pr, Nd), and CeO₂ in a stream of CS_2/N_2 , which was obtained by bubbling N_2 gas through liquid CS_2 , at 1323 K for 6 h. The stoichiometric mixture of metal sulfides was ground, put into a quartz ampoule, evacuated, and sealed. Then, each ampoule was heated at 1223 K for $BaLn₂TS₅$ ($T = Co$,Zn) and at 1273 K for $BANd_2MnS_5$ for 2 days with regrinding at intervals.

Powder X-ray diffraction measurements were carried out using a Rigaku RINT2200 diffractometer with graphitemonochromatized Cu*K*a radiation at room temperature. An angular range 2θ from 10 to 120 \degree was scanned in steps of 0.02° with a step time 5 s. The program RIETAN97 [\(6\)](#page-6-0) was used for refinements of crystal structures by the Rietveld method. A pseudo-Voigt profile function was applied to describe the peak shape.

The magnetic susceptibility measurements were carried out using a SQUID magnetometer (Quantum Design, MPMS-5S). The temperature dependence of the susceptibilities was measured under an applied magnetic field of 0.1 T after cooling down to $2K$ in a zero field (ZFC) and was measured on cooling under the field (FC) of 0.1T. The magnetic susceptibility data were corrected for the diamagnetic contribution of the atomic cores [\(7\)](#page-6-0).

FIG. 1. Powder X-ray diffraction patterns and Rietveld refinements for $BaNd_2TS_5$ ($T = Mn$, Co, Zn). In each case, the bottom trace is a plot of the difference between $(+)$ observed and $(-)$ calculated intensities. All allowed Bragg reflections are shown by vertical lines.

TABLE 1 Lattice and Positional Parameters of Ba Ln_2TS_5 ($Ln = La$, Ce, Pr, Nd; $T = Mn$, Co, Zn)

	BaNd ₂ MnS ₅	BaLa ₂ CoS ₅	BaCe ₂ CoS ₅	$BaPr_2CoS_5$	BaNd ₂ CoS ₅	BaLa ₂ ZnS ₅	BaCe ₂ ZnS ₅	BaPr ₂ ZnS ₅	BaNd ₂ ZnS ₅
$a/\text{\AA}$	7.8583(1)	7.9636(1)	7.8829(1)	7.8473(1)	7.8134(1)	7.9823(1)	7.9102(1)	7.8719(1)	7.8394(1)
$c/\text{\AA}$	13.7807(2)	13.6189(2)	13.5988(2)	13.5790(2)	13.5586(2)	13.6708(2)	13.6579(2)	13.6327(2)	13.6131(1)
x(Ln)	0.1613(3)	01.1632(1)	0.1624(3)	0.1631(3)	0.1630(3)	0.1623(3)	0.1620(3)	0.1621(4)	0.1622(3)
x(S(2))	0.1536(10)	0.1481(4)	0.1488(10)	0.1477(9)	0.1482(9)	0.1510(9)	0.1505(9)	0.1499(10)	0.1497(9)
z(S(2))	0.6329(6)	0.6375(2)	0.6364(6)	0.6359(6)	0.6350(6)	0.6376(6)	0.6359(6)	0.6346(7)	0.6343(6)
$R_I/\%$	3.26	3.02	3.28	2.47	2.32	3.17	2.89	2.11	1.91
$R_F/\%$	2.01	1.93	1.80	1.66	1.41	2.02	1.53	1.45	1.16
$R_{\rm WD}/\%$	12.57	13.43	14.09	13.33	11.14	11.63	13.44	13.90	11.33

Note. $R_I = \sum |I_{obs} - I_{cal}| / \sum I_{obs}$, $R_F = \sum |I_{obs}^{1/2} - I_{cal}^{1/2}| / \sum I_{obs}^{1/2}$, $R_{wp} = \sum |W(y_{obs} - y_{cal})^2 / \sum |W(y_{obs} - y_{cal})^$ $(x, x + \frac{1}{2}, 0)$ site, T in the 4*b* $\overline{(0, \frac{1}{2}, \frac{1}{4})}$ site, $\overline{S}(1)$ in the 4*c* $(\overline{0, 0, 0})$ site, and $\overline{S}(2)$ in the 16*l* ($\overline{x, x + \frac{1}{2}, z}$) site.

RESULTS AND DISCUSSION

Crystal Structures

Quaternary sulfides $BaLn₂TS₅$ (*Ln* = La, Ce, Pr, Nd; $T = \text{Co}, \text{Zn}$ and $\text{BaNd}_2\text{MnS}_5$ were obtained as single phases. Their powder X-ray diffraction patterns were confirmed to be similar to those for the $BaLn₂$ $(Ln = La, Ce, Pr)$. Their diffraction patterns were indexed on a tetragonal cell, which was isostructural with BaLn₂MnS₅ (space group *I4/mcm*), with four chemical formulas per unit cell. [Figure 1](#page-1-0) shows the observed and calculated diffraction patterns for $BaNd_2TS_5$
(T = Mn, Co, Zn). For the Rietveld analysis, three positional parameters of $BaLa₂MnS₅$ [\(2\)](#page-6-0) were used as the initial

positional parameters. The initial lattice parameters were calculated by the least-squares method. The refined lattice
parameters and atomic positions of $BaLn_2TS_5$ parameters of $BaLn₂TS₅$ parameters and atomic positions of $BaLn₂TS₅$
(*Ln* = La, Ce, Pr, Nd; *T* = Co, Zn) and $BaNd₂MnS₅$ are given in Table 1. Barium, lanthanide, and manganese (cobalt, zinc) cations are located in $4a(0, 0, \frac{1}{4})$, $8h(x, x + \frac{1}{2}, 0)$, and $4b$ $(0, \frac{1}{2}, \frac{1}{4})$ sites, respectively. Sulfur anions occupy two different sites, $S(1)$ and $S(2)$ in 4 c $(0,0,0)$ and 16*l* $(x, x + \frac{1}{2}, z)$, respectively. The schematic structure of $BaLn₂$ $(Ln = La, Ce, Pr, Nd;$ $T = Mn, Co, Zn)$ is illustrated in Fig. 2. The $BaTS₄$ layers and LnS layers, which

FIG. 2. The schematic structure of Ba_2LnTS_5 ($Ln = La, Ce, Pr, Nd;$) $T = Mn, Co, Zn$.

FIG. 3. Lattice parameters as a function of Ln^{3+} ionic radius. Data in this work and in Ref. (2) are represented by open and closed markers, respectively.

BaNd₂MnS₅ $BaLa₂CoS₅$ \cos_5 BaCe₂CoS₅ BaPr₂CoS₅ BaNd₂CoS₅ BaLa₂ZnS₅ BaCe₂ ZnS_5 Ba Pr_2ZnS_5 Ba Nd_2ZnS_5 Bond Length $r/\text{\AA}$
Ba-S(1) × 2 $B = S(1) \times 2$ 3.445 3.405 3.400 3.395 3.390 3.418 3.415 3.408 3.403 $Ba-S(1) \times 2$ 3.445 3.405 3.400 3.395 3.390 3.418 3.415 3.408 3.403
 $Ba-S(2) \times 8$ 3.386(3) 3.405(2) 3.382(4) 3.375(4) 3.365(4) 3.402(4) 3.389(5) 3.385(6) 3.376(3) Ba-S(2) × 8 3.386(3) 3.405(2) 3.382(4) 3.375(4) 3.365(4) 3.402(4) 3.389(5) 3.385(6) 3.376(3)

Ln-S(1) × 2 2.947(1) 2.981(1) 2.954(1) 2.937(1) 2.925(1) 2.991(1) 2.965(1) 2.950(1) 2.938(1) *Ln*-S(1) × 2 2.947(1) 2.981(1) 2.954(1) 2.937(1) 2.925(1) 2.991(1) 2.965(1) 2.950(1) 2.938(1)
 Ln-S(2) × 2 2.757(6) 2.833(4) 2.805(7) 2.795(7) 2.776(8) 2.825(7) 2.801(9) 2.783(10) 2.774(7) *Ln*-S(2) × 2 2.757(6) 2.833(4) 2.805(7) 2.795(7) 2.776(8) 2.825(7) 2.801(9) 2.783(10) 2.774(7)
 Ln-S(2) × 4 3.081(8) 3.109(3) 3.078(8) 3.060(7) 3.046(7) 3.130(7) 3.093(7) 3.067(9) 3.055(7) $S(S) \times 4$ 2.345(6) 3.109(3) 3.078(8) 3.060(7) 3.046(7) 3.130(7) 3.093(7) 3.067(9) 3.055(7)
 $T-S(2) \times 4$ 2.345(6) 2.265(4) 2.268(7) 2.245(7) 2.259(8) 2.296(7) 2.294(9) 2.289(10) 2.288(7)

TABLE 2 Bond Lengths for $BaLn₂TS₅$ (*Ln* = La, Ce, Pr, Nd; *T* = Mn, Co, Zn)

are perpendicular to the *c* axis, are stacked alternately. The Ba ions are coordinated by eight nearest-neighbor sulfur ions S(2) and two next-nearest-neighbor sulfur ions S(1). The Ln ions have eight sulfur neighbors.

The lattice parameters as a function of the lanthanide ionic radius referred from Shannon's ionic radii [\(8\)](#page-6-0) are shown in [Fig. 3.](#page-2-0) Those of Ba Ln_2MnS_5 ($Ln = La, Ce, Pr$) reported in Ref. [\(2\)](#page-6-0) are also shown in Fig. 3. Both the *a* and *c* parameters increase with the lanthanide ionic radius and the variation of the *a* parameters is steeper than that of the *c* parameters. Furthermore, these parameters increase with the transition metal ionic radius (0.66 Å for Mn²⁺, 0.58 Å for Co^{2+} , and 0.60 Å for Zn^{2+}) and the variation of the *c* parameters is larger than that of the *a* parameters. Some selected bond lengths are listed in Table 2 and their variation against the Ln^{3+} ionic radius is plotted in [Fig. 4.](#page-4-0) The Ba-S and Ln-S lengths increase monotonously with the size of the Ln^{3+} ions, while the Mn–S, Co–S, and Zn–S lengths are almost constant within the experimental errors for variation of the Ln^{3+} ionic radius.

Magnetic Properties

*Magnetic susceptibilities of BaLn*₂ZnS₅ (Ln = Ce, Pr, *Nd*). The reciprocal molar magnetic susceptibilities of $BaLn₂ZnS₅$ ($Ln = Ce, Pr, Nd$) are shown as a function of temperature in [Fig. 5.](#page-4-0) In these compounds, only the lanthanide ions are magnetic. The effective magnetic moments $\mu_{\rm eff}$ per mole of the lanthanide ion are determined to be 2.551(2) μ_B for BaCe₂ZnS₅, 3.666(2) μ_B for BaPr₂ZnS₅, and 3.655(1) μ_B for BaNd₂ZnS₅ by applying the Curie–Weiss law $(\chi = C/(T - \theta))$ to the reciprocal susceptibility vs temperature curve in the high temperature region $(150 \text{ K} \leq T \leq 300 \text{ K})$. These calculated moments agree well with the magnetic moments of free trivalent lanthanide ions $(2.54 \mu_{\rm B}$ for Ce³⁺, 3.58 $\mu_{\rm B}$ for Pr³⁺, 3.62 $\mu_{\rm B}$ for Nd³⁺).

The convex curve of $\text{BaCe}_2\text{ZnS}_5$ at lower temperatures should be attributable to the contribution of the crystal field effect. Only the $BaNd_2ZnS_5$ compound shows a magnetic anomaly at low temperatures. The inset of [Fig. 5](#page-4-0) shows the

magnetic susceptibility of $BaNd₂ZnS₅$ below 10 K. It shows a maximum at 3.9 K and indicates that the Nd^{3+} ion is in an antiferromagnetic state below this temperature. Since the $Ce³⁺$ ions are capable of showing magnetic interactions at lower temperatures, the $BaCe₂ZnS₅$ compound should also show some magnetic transition at furthermore lower temperatures.

*Magnetic susceptibility of BaNd*2 *MnS*5. [Figure 6](#page-4-0) shows the temperature dependence of the molar magnetic susceptibilities of $BaNd₂MnS₅$. No divergence between the ZFC and FC magnetic susceptibilities is observed. The susceptibility of $BaNd_2MnS_5$ indicates an antiferromagnetic transition at T_{N1} (~ 4.7 K) and a magnetic anomaly at T_{N2} (\sim 63 K). This antiferromagnetic transition should be attributable to the antiferromagnetic ordering of the Nd^{3+} ions, because similar magnetic transition at the nearly same temperature has been observed in $BaNd_2ZnS_5$ (see [Fig. 5\)](#page-4-0).

[Figure 7](#page-5-0) shows the first derivative of the magnetic susceptibility of $BaNd₂MnS₅$ in the neighborhood of T_{N2} . The results for $BaLn₂MnS₅$ (*Ln* = La, Ce, Pr) [\(2\)](#page-6-0) are also shown in [Fig. 7.](#page-5-0) The magnetic anomaly found for $BaNd_2MnS_5$ at \sim 63 K is quite similar to those reported for Ba*Ln*₂ $(Ln = La, Ce, Pr)$. From the magnetic susceptibility and the specific heat measurements, the Mn^{2+} ions were found to be in the antiferromagnetic state below 58.5 K for $BaLa₂MnS₅$, 62 K for BaCe₂MnS₅, and 64.5 K for BaPr₂MnS₅ [\(2\).](#page-6-0) Therefore, the anomaly found at T_{N2} (63K) in BaNd₂MnS₅ should be due to the antiferromagnetic interactions between Mn^{2+} ions.

The inset of [Fig. 6](#page-4-0) shows the reciprocal magnetic susceptibility vs temperature curve for $BaNd₂MnS₅$ in the 150–300 K temperature range. The Curie–Weiss law holds in this temperature range, which yields the Weiss constant $\theta = -76.8(1)$ K and the Curie constant $C = 7.588(3)$ emu mol⁻¹ K⁻¹ for one formula unit. The spectrum of $BaNd_2MnS_5$, taken from electron paramagnetic resonance (EPR) measurement at room temperature, is very similar to that of $BaLa₂MnS₅$ in Ref. [\(2\)](#page-6-0), and the *g* value is calculated

FIG. 4. Variation of the bond lengths as a function of Ln^{3+} ionic radius.

to be 2.00. This result means that the Mn ion is in the ${}^{6}S_{5/2}$ state without an orbital moment contribution, and its effective magnetic moment μ_{eff} is 5.92 μ_B . The total effective magnetic moment of $BaNd₂MnS₅$ is represented by the

FIG. 5. Temperature dependence of the reciprocal magnetic susceptibility χ^{-1} of Ba Ln_2ZnS_5 ($Ln = Ce, Pr, Nd$). Straight lines represent the Curie–Weiss law fittings (see text). The inset shows χ of BaNd₂ZnS₅ below 10 K.

equation $\mu_{eff} (total)^2 = \mu_{eff} (Mn^{2+})^2 + 2\mu_{eff} (Nd^{3+})^2$. Asequation $\mu_{eff}(\text{total}) = \mu_{eff}(\text{NII}) + 2\mu_{eff}(\text{NII})$. Assuming that the effective moment of Mn^{2+} is 5.92 μ_{B} , the moment of Nd³⁺ is estimated to be 3.59 μ_B , which is in good agreement with the value of a free Nd^{3+} ion (3.62 μ_B).

 $Magnetic$ *susceptibilities of BaLn*₂ CoS_5 (*Ln* = *La*, *Ce*, *Pr*, *Nd*). [Figure 8](#page-5-0) shows the temperature dependence of the magnetic susceptibilities of $BaLa₂CoS₅$. An antiferromagnetic transition is found at $60K$. From the fitting of

FIG. 6. Temperature dependence of the magnetic susceptibility χ of BaNd₂MnS₅. The inset shows χ^{-1} in the temperature range between 150 and 300 K. A straight line represents the Curie-Weiss law fitting.

FIG. 7. The first derivatives of the magnetic susceptibilities of $BaLn₂MnS₅$ (*Ln* = La, Ce, Pr, Nd) in the neighborhood of T_{N2} .

the Curie–Weiss law the effective magnetic moment of Co^{2+} and a Weiss constant are estimated to be 4.857(2) μ_B and $-66.4(2)$ K, respectively. This moment is larger than the value $(3.87 \mu_B)$ calculated from the "spin-only" state $(S = 3/2)$ of d^7 electronic configuration and is smaller than the value $(6.63 \mu_{\rm B})$ calculated by taking into account the contribution of the spin-orbit interaction. This result

FIG. 8. Temperature dependence of the magnetic susceptibility γ of $BaLa₂CoS₅$. The inset shows χ^{-1} in the temperature range between 150 and 300 K. A straight line represents the Curie–Weiss law fitting.

FIG. 9. Temperature dependence of the reciprocal magnetic susceptibilities χ^{-1} of Ba*Ln*₂CoS₅ (*Ln* = Ce, Pr, Nd). Straight lines represent the Curie–Weiss law fittings. The inset shows χ of BaNd₂CoS₅ below 10 K.

indicates that the ground state of Co^{2+} has an unquenched orbital moment.

Figure 9 shows the reciprocal magnetic susceptibilities of $BaLn₂CoS₅$ (*Ln* = Ce, Pr, Nd) as a function of temperature. In all the susceptibilities, the magnetic anomalies are found around 65 K and they should be attributable to the antiferromagnetic couplings of the $Co²⁺$ ions, because a clear antiferromagnetic transition has been observed for $BaLa₂CoS₅$ (La: diamagnetic) at nearly the same temperature (see Fig. 8). In order to determine the Néel temperatures of the $Co²⁺$ ions, the first derivatives of the magnetic susceptibility of $BaLn_2CoS_5$ ($Ln = La$, Ce, Pr, Nd) are calculated in the temperature range from 40 to 80 K, and they are shown in [Fig. 10.](#page-6-0) The $Co²⁺$ ions were found to be in the antiferromagnetic state below 63.5 K for BaLa₂CoS₅, 65K for BaCe₂CoS₅, 65K for BaPr₂CoS₅, and 58.5K for BaNd₂CoS₅. For BaNd₂CoS₅, another antiferromagnetic ordering occurs below 6.7K, as shown in the inset of Fig. 9. This ordering should be due to the antiferromagnetic coupling of the Nd^{3+} ions, in analogy with the cases of $BaNd_2ZnS_5$ and $BaNd_2MnS_5$. The magnetic susceptibilities of these compounds obey a Curie-Weiss law at high temperatures. In the BaLn₂ZnS₅ compounds, the effective magnetic moment of the Ln ion is very close to that of a free *Ln* ion. On the assumption that the moment of the Ln ion in the $BaLn₂CoS₅$ compounds also agrees with that of a free *Ln* ion, the effective magnetic also agrees with that of a nee *Eh* fon, the enective magnetic
moment of Co^{2+} is calculated to be 5.05 μ_{B} for BaCe₂CoS₅, 4.79 μ_B for BaPr₂CoS₅, and 5.03 μ_B for BaNd₂CoS₅, indicating that the orbital moments of $Co²⁺$ ions are not quenched.

FIG. 10. The first derivatives of the magnetic susceptibility of $BaLn₂CoS₅$ ($Ln = La, Ce, Pr, Nd$) in the temperature range between 40 and 80 K.

SUMMARY

New quaternary sulfides with a tetragonal structure $(\text{space group: } I4mcm), \text{ Ba}Ln_2MS_5 \text{ } (Ln = La, Ce, Pr, Nd;$

 $M = \text{Co}, \text{Zn}$ and $\text{BaNd}_2\text{MnS}_5$ were synthesized. The lattice parameters of *a* increase mainly with the size of the lanthanide ions, and those of *c* increase with the transition metal size. Magnetic susceptibility measurements show that the Mn²⁺, Co²⁺, and Nd³⁺ ions in these $BaLn₂MS₅$ (*Ln* = La, Ce, Pr, Nd; *M* = Mn, Co, Zn) are in the antiferromagnetic states below 63, \sim 65, and 6K, respectively.

REFERENCES

- 1. H. Masuda, T. Fujino, N. Sato, and K. Yamada, *J*. *Solid State Chem*. 146, 336 (1999).
- 2. M. Wakeshima and Y. Hinatsu, *J*. *Solid State Chem*. 163, 330 (2000).
- 3. M. Wakeshima, Y. Hinatsu, K. Oikawa, Y. Shimojo, and Y. Morii, *J*. *Mater*. *Chem*. 10, 2183 (2000).
- 4. L. S. Martinson, J. W. Schweitzer, and N. C. Baenziger, *Phys*. *Rev*. *B* 54, 11265 (1996).
- 5. N. Nakayama, K. Kosuge, S. Kachi, T. Shinjo, and T. Takada, *J*. *Solid State Chem*. 33, 351 (1980).
- 6. F. Izumi, *in* "The Rietveld Method" (R. A. Young, Ed.), Chap. 13. Oxford University Press, Oxford, 1995.
- 7. L. N. Mulay and E. A. Boudreaux (Eds.), "Theory and Applications of Molecular Diamagnetism.'' Wiley-Interscience, New York, 1976.
- 8. R. D. Shannon, *Acta Crystallogr*., *Sect*. *A*: *Found*. *Crystallogr*. 32, 751 (1976).